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Nonlinear Optimization of the Shape Functions in
the Finite Element Method When Determining
Cutoff Frequencies of Waveguides
of Arbitrary Cross Section

J. C. UTIES, G. SANCHEZ SARMIENTO, AND
P.A.A.LAURA

Abstract —The present paper deals with a review of the recently devel-
oped k optimization process of the finite element method when' solving
eigenvalue problems. The methodology is then applied to the determination
of the fundamental cutoff frequency of a hollow-piped waveguide of
cardioidal cross section. It is shown that a considerable reduction in
computer memory and/or CPU time is achieved.

I. INTRODUCTION

As stated recently by Kuttler {1] in an excellent paper, “many
important waveguides have complicated cross sections which
cannot be solved by the method of separation of variables. A
variety of approximation methods have been used to try to
determine the cutoff frequencies of such waveguides.”

Among the many approximate analytical methods, the meth-
ods of Galerkin, Rayleigh, and Ritz are perhaps the best known.
On the other hand, they do constitute the essential foundation to
one of the most popular and universally used computational
algorithms: the finite element method.

Minimizing the discretization and numerical errors is certainly
a question of the utmost importance when using the finite
element (FE) method in order to ascertain reliable results. On the
other hand, from economic and scientific viewpoints, the analyst
wishes to accomplish these goals without increasing computer
memory and /or CPU time.

Rather recently, the concept of the k optimization parameter
contained in the shape functions [2] has been developed.! The
procedure consists of including an unknown, exponential param-
eter k in the shape functions when determining natural frequen-
cies or critical loads when the FE method is formulated by using
the Rayleigh—Ritz approach. Since this formulation yields upper
bounds [4], by numerical minimization of the eigenvalues with
respect to the parameter k, one is able to optimize the eigénval-
ues under study.

This paper presents a brief discussion of the method and its
application to a waveguide of cardioidal cross section (Fig. 1).
Eigenvalues for this type of complicated cross section have been
determined by several methods in [5] and this fact allows for a
reasonable assurance of the accuracy of the numerical results
presented here. On the other hand the cardioidal shape resembles
rather closely the “heart-shaped” waveguide studied extensively
by Daly [6].

II. FimNiTE ELEMENT FORMULATION

The elements are quadrilaterals with straight sides, four nodes,
and one degree of freedom per node, as shown in Fig. 2. For each
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'Successful efforts in this direction were simultaneously achieved by Bert
and coworkers [3].

"

~[=

(o
¢

a 2
e qm o (54mG),

a: radius of the circums-
cribing circle. (a)

CARDIOH

m =1/Z
a

(b)

Fig. 1. Cardioidal domain. (a) Finite clement mesh for the cardioid (m =1/2;
100 quadrilateral elements, 121 nodes, and 81 degrees of freedom). (b)
Configurations mapped into a unit circle by eq. (4).
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Fig. 2. Description of the quadrilateral elements.

node, the following shape functions, which depend on a nonlin-
ear parameter & to be optimized, are defined:

N(&m: k) =1-[1-1(1-&)(1-n)]"
Ny (.05 k) =1=[1-1(1+£)(1-9)]
N(¢,m; k) =1-[1-11+6)A+n)]”

Na(&,m; k) =1-[1-3(1- &)+ n)]". (1)

The procedure consists basically in assuming an approximation
of each eigenfunction U(x, y) of the 2-D Helmholtz equation by
a linear combination U”(x,y; k) of the shape functions that
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corresponds to every node:

n

U(x,y) =U"(x,y; k) = glNI(x,y; k)u,=N(x,y: k)u
(2

where # is the total number of nodes of the mesh. The u,’s are
the nodal values of U".

Taking a fixed value of the k parameter, the standard
Rayleigh-Ritz procedure leads to a generalized algebraic eigen-
value problem of the form

S(k)u="M(k)u (3)
where w is the frequency (dependent upon the k parameter)
associated with each eigenfunction (approximated by the eigen-
vector u). .S (the “stiffness” matrix) and M (the “mass” matrix)
are both symmetric square matrices with band structure. Also, M
is positive definite. Gauss numerical quadrature is employed in
order to calculate all the integrals contained in both matrices,
taking four sample points for each coordinate (16 points per
element). The Jacobian matrix and its inverse are calculated in a
straightforward manner.

The eigenvalue problem (3) is solved by a combination of the
inverse power iteration and the Rayleigh quotient iteration meth-
ods. This combination acts directly on both matrices without any
kind of factorization. This algorithm has been summarized in {2].

Since the Rayleigh—Ritz approach yields upper bounds of the
eigenvalues, by numerical minimization of the eigenvalues with
respect to the k parameter one is able to optimize the eigenvalues
under study. This minimization requires that the explained proce-
dure be repeated for a set of values of the k parameter, and this
procedure increases extensively the computational work. Never-
theless, the numerical experiments performed in the present
investigation show that a drastic reduction in memory and/or
computer time can be achieved by this new procedure in the case
of domains of complicated boundary shape.

IIL

Consider hollow waveguides whose cross section can be con-
formally transformed onto a unit circle by the functional relation

(4)

NUMERICAL RESULTS

w=A(¢+ m¢?)
where A is a scale factor and m is a parameter such that m < 1.
For m =14 one has the cardioid shape (see Fig. 1).

Extensive numerical results are available in [5] for the case of
TM modes using a) the Galerkin method coupled with conformal
transformation of the given domain onto a unit circle and b) a
classical finite clement formulation which makes usc of triangular
elements and one unknown per node (A). These results are shown
in Table I and compared with the results obtained in the present
investigation. In column (B) quadrilateral elements are used with
linear base functions, and in (C) the k optimization process is
carried out.

It is observed that one can achieve almost as much accuracy as
that attained in [5], where 576 triangular elements and 276
unknowns were used, employing only 100 quadrilateral elements
and 81 unknown when the k optimization procedure is used.
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TABLE I
COMPARISON OF FUNDAMENTAL EIGENVALUES DETERMINED
BY SEVERAL APPROACHES

Qo1
Analvtical
m Results [5) (A) (B) (&) K opt
0.001 2.407 2411 24252 2.4159 1.0356
0.01 2.428 2.433 2.4468 24374 1.0355
0.025 2.463 2.467 2.4819 24723 1.0355
0.1 2.621 2625 2.6399 2.6296 1.0356
0.2 2.787 2.787 2.8045 2.7929 10359
0.25 2 851 2.849 2 8685 2.8563 1.0361
05 3039 3.036 3.0640 3.0480 1.0361

(A): Finite element results; 576 triangular elements and 276
unknowns [5].

(B) Finite element results; 100 quadrilateral elements and 81
unknowns (A =1).

(C): Same as (B) but the eigenvalues are determined using the &
optimization process.

Similar calculations of the fundamental cutoff frequency of a
waveguide of square cross section (which has an exact solution)
have been performed in the present study in order to investigate
the economies attained in memory requirements and CPU time.
These calculations have demonstrated that, for example, using
225 degrees of freedom with bilinear shape functions (k =1) one
obtains the first eigenvalue with a relative accuracy of 0.32
percent with a CPU time consumed of 500 arbitrary units.
Optimizing now with respect to the k parameter with four global
iterations using a mesh with only 28 degrees of freedom, one can
achieve the same relative accuracy consuming 280 arbitrary units
of CPU time.

Then, the efficiency ratio of the present approach is, for that
problem, 1.80 m CPU time and a value of 8 from the point of
view of the number of degrees of freedom.

In conclusion, it appears that the present optimization process
possesses attractive features from scientific and economic view-
points. In principle it may also be applied to eigenvalue problems
in anisotropic media, nonlinear situations, higher order nodes,
etc.
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