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Nonlinear Optimization of the Shape Functions in

the Finite E1ement Method When Determining

Cutoff Frequencies of Waveguides

of Arbitrary Cross Section

J. C. UTJES, G, SANCHEZ SARMIENTO, AND

P. A. A. LAURA

Abstract —The present paper deafs with a review of the recently devel-

oped k optimization process of the finite element method when solving

eigenvalue problems. The methodology is then applied to the determination

of the fundamental cutoff frequency of a hollow-piped wavegoide of

cardioidal cross section. It is shown that a considerable reduction in

computer memory and/or CPU time is achieved.

I. INTRODUCTION

As stated recently by Kuttler [1] in an excellent paper, “many

important waveguides have complicated cross sections which

cannot be solved by the method of separation of variables. A

variety of approximation methods have been used to try to

determine the cutoff frequencies of such waveguides.”

Among the many approximate analytical methods, the meth-

ods of Galerkin, Rayleigh, and Ritz are perhaps the best known.

On the other hand, they do constitute the essentiaf foundation to

one of the most popular and universally used computational

algorithms: the finite element method,

Minimizing the discretization and numericaJ errors is certainly

a question of the utmost importance when using the finite

element (FE) method in order to ascertain reliable results. On the

other hand, from economic and scientific viewpoints, the analyst

wishes to accomplish these goals without increasing computer

memory and/or CPU time.

Rather recently, the concept of the k optimization parameter

contained in the shape functions [2] has been developed.1 The

procedure consists of including an unknown, exponential param-

eter k in the shape functions when determining natural frequen-

cies or critical loads when the FE method is formulated by using

the Rayleigh–Ritz approach. Since this formulation yields upper

bounds [4], by numerical minimization of the eigenvalues with

respect to the parameter k, one is able to optimize the eigenval-

ues under study.

This paper presents a brief discussion of the method and its

application to a waveguide of cardioidal cross section (Fig. 1).

Eigenvalues for this type of complicated cross section have been

determined by several methods in [5] and this fact aJlows for a

reasonable assurance of the accuracy of the numerical results

presented here. On the other hand the cardioidal shape resembles

rather closely the “heart-shaped” waveguide studied extensively

by Daly [6].

II. FINITE ELEMENT FORMULATION

The elements are quadrilaterals with straight sides, four nodes,

and one degree of freedom per node, as shown in Fig. 2. For each
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1Successful efforts in this direction were simultaneously achieved by Bert

and cmvorkcrs [3].
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Fig. 1, Cardioidal domain. (a) Finite element mesh for the cardioid ( m = 1/2;
1()() quadrilateral elements, 121 nodes, and 81 degrees of freedom). (b)
Configurations mapped into a unit circle by eq. (4).
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Fig. 2, Description of the quadrilateral elements.

node, the following shape functions, which depend on a nonlin-

ear parameter k to be optimized, are defined:

Nl(f,q; k)=l-[l -i(l-g)(l-q)]k

N,(&, ~;k)=l- [l-~(l+&)(l-q)]JC

M(&)~;k)=l-[l-i(l+t)(l+d]”

N4($, q; k)=l–[l- ~(1-~)(1+ q)]”. (1)

The procedure consists basically in assuming an approximation

of each eigenfunction U( x, y) of the 2-D Helmholtz equation by

a linear combination U“ ( x, y; k) of the shape functions that
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corresponds to every node:

U(x, y)=u’’(x, y; k)= i ~(x, y; k)u, =iqx, y: Ik)Lf
,=1

(2)

where n is the total number of nodes of the mesh. The u,’s are

the nodal values of U“.

Taking a fixed value of the k parameter, the standard

Rayleigh-Ritz procedure leads to a generalized algebraic eigen-

value problem of the form

s(k)~=@~M(k)y (3)

where u is the frequency (dependent upon the k parameter)

associated with each eigenfunction (approximated by the eigen-

vector u). S (the “stiffness” matrix) and M (the “mass” matrix)

are both symmetric square matrices with band structure. Also, M

is positive definite. Gauss numerical quadrature is employed in

order to calculate all the integrals contained in both matrices,

taking four sample points for each coordinate (16 points per

element). The Jacobian matrix and its inverse are calculated in a

straightforward manner.

The eigenvalue problem (3) is solved by a combination of the

inverse power iteration and the Rayleigh quotient iteration meth-

ods. This combination acts directly on both matrices without any

kind of factorization. This algorithm has been summarized in [2].

Since the Rayleigh-Ritz approach yields upper bounds of the

eigenvalues, by numericaf minimization of the eigenvalues with

respect to the k parameter one is able to optimize the eigenvalues

under study. This minimization requires that the explained proce-

dure be repeated for a set of values of the k parameter, and this

procedure increases extensively the computational work. Never-

theless, the numerical experiments performed in the present

investigation show that a drastic reduction in memory and/or

computer time can be achieved by this new procedure in the case

of domains of complicated boundary shape.

III. NUMERICAL RESULTS

Consider hollow waveguides whose cross section can be con-

formably transformed onto a unit circle by the functional relation

~=~({+m{z) (4)

where ,4 is a scale factor and m is a parameter such that m < ~.

For m = $ one has the cardioid shape (see Fig. 1).

Extensive numerical results are available in [5] for the case of

TM modes using a) the Galerkin method coupled with conformal

transformation of the given domain onto a unit circle and b) a

classical finite element formulation which makes usc of triangular

elements and one unknown per node (A). These results are shown

in Table I and compared with the results obtained in the present

investigation. In column (B) quadrilateral elements are used with

linear base functions, and in (C) the k optimization process is

carried out.

It is observed that one can achieve almost as much accuracy as

that attained in [5], where 576 triangular elements and 276

unknowns were used, employing only 100 quadrilateral elements

and 81 unknown when the k optimization procedure is used.

TABLE I

COMPARISONor FUNDAMENTALEIGHNVALUESDETERMINED
BY SEVERALAPPROACHES

a 01

Analytical

{11 Results [5] (A) (B) (c) kop,

0.001 2,407 2.411 2,4252 2.4159 1.0356

0.01 2.428 2.433 2,4468 2.4374 1.0355

0.025 2.463 2.467 2,4819 2,4723 1,0355

0.1 2.621 ~ 625 2.6399 2.6296 1.0356

0.2 2.787 2.787 2.8045 2.7929 10359

0.25 2851 2.849 28685 2.8563 1.0361

05 3039 3.036 3.0640 3.0480 1.0361

(A): Finite element results; 576 tnangu]ar elements and 276
unknowns [5].

(I3) Finite element results; 100 quadrilateral elements and 81
unknowns ( h = 1).

(C): Same as (B) but the elgenvalues are determined using the k

optimization process.

Similar calculations of the fundamental cutoff frequency of a

waveguide of square cross section (which has an exact solution)

have been performed in the present study in order to investigate

the economies attained in memory requirements and CPU time.

These calculations have demonstrated that, for example, using

225 degrees of freedom with bilinear shape functions (k= 1) one

obtains the first eigenvalue with a relative accuracy of 0.32

percent with a CPU time consumed of 500 arbitrary units.

Optimizing now with respect to the k parameter with four global

iterations using a mesh with only 28 degrees of freedom, one can

achieve the same relative accuracy consuming 280 arbitrary units

of CPU time.

Then, the efficiency ratio of the present approach is, for that

problem, 1.80 m CPU time and a value of 8 from the point of

view of the number of degrees of freedom.

In conclusion, it appears that the present optimization process

possesses attractive features from scientific and economic view-

points. In principle it may also be applied to eigenvalue problems

in anisotropic media, nonlinear situations, higher order nodes,

etc.
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